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ABSTRACT 

This study develops novel approaches to partition mixed data into natural groups, that 

is, clustering datasets containing both numeric and nominal attributes. Such data arises in 

many diverse applications. Our approach addresses two important issues regarding clustering 

mixed datasets. One is how to find the optimal number of clusters which is important because 

this is unknown in many applications. The other is how to group the objects “naturally” 

according to a suitable similarity measurement. These problems are especially difficult for 

the mixed datasets since they involve determining how to unify the two different 

representation schemes for numeric and nominal data.   

To address the issue of constructing clusters, that is, to naturally group objects, we 

compare the performance of four distances capable of dealing with the mixed datasets when 

incorporating into a classical agglomerative hierarchical clustering approach. Based on these 

results, we conclude that the so-called co-occurrence distance to measure the dissimilarity 

performs well as this distance is found to obtain good clustering results with reasonable 

computation, thus balancing effectiveness and efficiency.   

The second important contribution of this research is to define an entropy-based 

validity index to validate the sequence of partitions generated by the hierarchical clustering 

with the co-occurrence distance. A cluster validity index called the BK index is modified for 

mixed data and used in conjunction with the proposed clustering algorithm. This index is 

compared to three well-known indices, namely, the Calinski-Harabasz index (CH), the Dunn 

index (DU), and the Silhouette index (SI). The results show that the modified BK index 

outperforms the three other indices for its ability to identify the true number of clusters. 

Finally, the study also identifies the limitation of the hierarchical clustering with a co-

occurrence distance, and provides some remedies to improve not only the clustering accuracy 

but especially the ability to correctly identify best number of classes of the mixed datasets. 
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CHAPTER 1 INTRODUCTION 

1.1  Motivation 

Clustering is one of the fundamental techniques in data mining. The primary 

objective of clustering is to partition a set of objects into homogeneous groups (Jain and 

Dubes, 1988). An effective clustering algorithm needs a suitable measure of similarity or 

dissimilarity, so a partition structure would be identified in the form of “natural groups”, 

where objects that are similar tend to fall into the same group and objects that relatively 

distinct tend to separate into different groups. Clustering has been extensively applied in 

diverse fields, including healthcare systems (Mateo et al., 2008), customer relations 

management (Jing et al., 2007), manufacturing systems (Suikki et al., 2006), biotechnology 

(Kim et al., 2009), finance (Liao et al., 2008), and geographical information systems (Touray 

et al., 2010).   

Many algorithms that form clusters in numeric domains have been proposed. The 

majority exploit inherent geometry or density. This includes classical k-means (Kaufman and 

Rousseew, 1990; Jing et al., 2007) and agglomerative hierarchical clustering (Day and 

Edelsbrunner, 1984; Yasunori et al., 2007). More recently several studies have tackled the 

problem of clustering and extracting from categorical data, i.e., batch self-organizing maps 

(Chen and Marques, 2005), matrix partitioning method (Jiau et al., 2006), k-distributions (Cai 

et al., 2007), and fuzzy c-means (Brouwer and Groenwold, 2010). However, while the 

majority of the useful data is described by a combination of mixed features (Li and Biswas, 

2002), traditional clustering algorithms are designed primarily for one data type. The 

literature on clustering mixed data is still relatively sparse (Hsu et al., 2007; Ahmad and Dey, 

2007; Lee and Pedrycz, 2009) and more work is needed in this area.   

The main obstacle to clustering mixed data is determining how to unify the distance 

representation schemes for numeric and categorical data. Numeric clustering adopts distance 

metrics while symbolic clustering uses a counting scheme to calculate conditional probability 

estimates as a means for defining the relation between groups. The pragmatic methods that 

convert one type of attributes to the other and then apply traditional single-type clustering 

algorithms may lead to significant loss of information. If categorical data with a large domain 
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is converted to numeric data by binary encoding, more space and time are introduced. 

Moreover, if quantitative and binary attributes are included in the same index, these 

procedures will generally give the latter excessive weight (Goodall, 1966). 

Apart from the need for a suitable distance measure for mixed data, another critical 

issue is how to evaluate clustering structures objectively and quantitatively, that is, without 

using the domain knowledge and expert experience. The need to estimate the number of 

clusters in continuous data has led to the development of a large number of what is usually 

called validity criteria (Halkidi et al., 2002; Kim and Ramakrishna, 2005), but there are few 

criteria for evaluating partitions produced from categorical clustering (Celeux and Govaert, 

1991; Chen and Liu, 2009). To the best of our knowledge there is no literature that 

satisfactorily addresses the cluster validation problems related to data with both discrete and 

real features.  

The limitations of existing clustering methodologies and criterion functions in dealing 

with mixed data motivate us to develop clustering algorithms that can better handle both 

numeric and categorical attributes.  

1.2  Objective  

As stated above, this dissertation addresses the question of how to partition mixed 

data into natural groups efficiently and effectively. Later, the proposed approach will be 

applied to identify the “optimal” classification scheme among those partitions. The extension 

of clustering to a more general setting requires significant changes in algorithm techniques in 

several fundamental respects. To tackle the objectives stated above, the following three 

research tasks will therefore be addressed: 

(1) We will develop an agglomerative hierarchical clustering method for 

clustering mixed datasets and investigate the performance of various distance 

measurements that represent both data types.  

As mentioned above, the traditional way of converting data into a single type has 

many disadvantages. Within the context of an agglomerative hierarchical clustering method, 

we will investigate quantitative measures of similarity among objects that could keep not 

only the structure of categorical attributes but also relative distance of numeric values. 

Specifically, the measurements will be the co-occurrence distance (Ahmad and Dey, 2007), 
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the k-prototype distance (Huang, 1998), the optimal weight distance (Modha and Spangler, 

2003), and the Goodall distance (Goodall, 1966). In the literature, the first three distances 

have been applied in k-means families, and the last is used in an agglomerative hierarchical 

clustering called the SBAC method (Li and Biswas, 2002). Our goal is to choose the distance 

measure that not only produces a low error rate in partitioning but is also suitable to search 

for the proper number of clusters.   

(2) We will investigate how to determine the optimal number of classes in mixed 

datasets.  

Evaluation of clustering structures can provide crucial insights about whether the 

clustering partition derived is meaningful or not. For numeric clustering, the number of 

clusters can be validated through geometry shape or density distribution, while cluster 

entropy and categorical utility are frequently used for categorical clustering. We will 

investigate how to extend the extant validity indices and make them capable of handling both 

data types. Specifically, we will investigate two approaches since they can integrate current 

validation methods smoothly. First, if a quantitative distance would represent numeric and 

categorical dissimilarities in a compatible way, then this geometric-like distance may be 

exploited in traditional numeric validation methods like the Calinski-Harabasz index, in 

which the optimal number of clusters would be determined by minimizing the intra-cluster 

distance while maximizing the inter-cluster distance. Second, it is also possible to calculate 

the entropies of cluster structures over both components. A low entropy is desirable since it 

indicates an ordered structure. We claim that the increments of expected entropies of optimal 

clusters structures over a series of successive cluster numbers would indicate the optimal 

number of clusters.   

(3) We will explore the property of the proposed algorithm.  

There is no cure-all algorithm for clustering problems. It is important to understand 

which datasets would be much more applicable to be analyzed by the new algorithm. Some 

testing datasets with various characteristics will be generated to investigate specific 

properties. Certainly, these properties could guide some data preprocessing operations on 

real-world datasets such as a feature selection.  
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1.3  Overview 

The outcome of the research is a framework that combines a hierarchical clustering 

integrated with a co-occurrence distance and an extension of the BK index to search for the 

best number of the classes. Figure 1 shows this procedure. As illustrated, it contains six main 

steps to recover the underlying structure of mixed datasets under the assumption that the 

number of classes is unknown.  

  

Figure 1: The proposed clustering framework. 

The framework works as follows: (1) calculate the significance of each attribute, in 

which the numeric part will be used as weights in the co-occurrence distance; (2) conduct a 

feature selection according to the order of attributes’ significance and the properties of the 

proposed algorithm. Thus, we can generate a reduced dataset that would be much more 

applicable to this algorithm and get better result. This step is optional, exploratory, and 
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iterative; (3) calculate the co-occurrence distance for the dataset of interest or the reduced 

mixed dataset; (4) construct a dendrogram by a hierarchical algorithm; (5) determine the 

optimal number of the classes by using BK index; (6) cut the tree according to this proper 

number and report the results.  

1.4  Summary 

All of the research tasks are either completely or partially new to the literature. The 

extended clustering applicable to arbitrary collections of datasets and the validity index for 

mixed datasets are particular novel and make significant contributions. The contributions in 

this study can be thus summarized as follows. 

(1) Compare four distances capable of handling with the mixed dataset when used 

with hierarchical clustering.   

(2) Identify limitations of the hierarchical clustering with a co-occurrence distance 

and propose solutions.  

(3) Define a validity index to search the optimal number of clusters. 

 

The remainder of the dissertation is organized as follows. In Chapter 2, we survey the 

related literature. In Chapter 3, we compare the four distances when used in an agglomerative 

clustering algorithm, and then choose the co-occurrence distance. The limitation of the 

proposed algorithm is identified. The corresponding solutions are provided. In Chapter 4, a 

validity index is integrated with the proposed algorithm to estimate the number of clusters for 

mixed data with numeric and categorical features. We conclude and suggest our future 

studies in Chapter 5.  
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CHAPTER 2 REVIEW OF LITERATURE 

We will briefly review the literature on cluster analysis and cluster validation. The 

first section provides a basic understanding of clustering methods, specifically on categorical 

clustering and mixed clustering. Then we introduce several well-known validity indices to 

determine the optimal number of clusters. 

2.1  Cluster Analysis 

Cluster analysis was first proposed in numeric domains, where a distance is clearly 

defined. Then it extended to categorical data. However, much of the data in the real world 

contains a mixture of categorical and continuous features. As a result, the demand of cluster 

analysis on the mixed data is increasing.   

2.1.1  Numeric Clustering 

Clustering is to partition the data into groups where objects that are similar tend to 

fall into the same groups and objects that are relatively distinct tend to separate into different 

groups. Traditional clustering methodologies handle datasets with numeric attributes. The 

proximity measure can be defined by geometrical distance. A set of data with n objects (o1, 

⋯, on) are divided into k disjoint clusters (C1, ⋯, Ck), called partition P(k). n is the number 

of objects in the dataset and ni the number of objects in the ith cluster. D(Ci, Cj) is the distance 

between the ith cluster and the jth cluster. d(oi, oj) is the distance between the ith object and the 

jth object. The centroid of the ith cluster is defined as
1

i

i

o Ci

z o
n ∈

= ∑ . 
1{ , , }kZ z z= ⋯ is a set of k 

center locations. ( , )iD Z o is the shortest distance between object i and its nearest center. 

Clustering constructs a flat (non-hierarchical) or hierarchical partitioning of the 

objects. Hierarchical algorithms use the distance matrix as input and create a sequence of 

nested partitions, either from singleton clusters to a cluster including all individuals or vice 

versa. Some details on agglomerative methods are provided here since the divisive clustering 

is not commonly used in practice. To begin, the n objects form n singleton clusters. The 

clusters with the minimal distance are merged. The distances between the new generated 
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cluster and others will be updated according to some linkage method. The searching for two 

clusters with the minimal distance and the merging process continue until all objects in the 

same cluster. The commonly used linkage methods are listed as follows, along with the 

definitions of inter-cluster distances and update rules. 

(1) The single linkage defines the cluster distance as the smallest distance of a pair of 

objects in two different clusters. It is known as the nearest neighborhood method, which 

tends to cause chaining effect. 

,
( , ) min ( , )

i i j j
i j i j

o C o C
D C C d o o

∈ ∈
=  (2.1) 

( , ( , )) min( ( , ), ( , ))k i j k i k jD C C C D C C C C=  (2.2) 

(2) The complete linkage picks the furthest objects in two different clusters as the 

cluster distance.   

,
( , ) max ( , )

i i j j

i j i j
o C o C

D C C d o o
∈ ∈

=  (2.3) 

( , ( , )) max( ( , ), ( , ))k i j k i k jD C C C D C C C C=  (2.4) 

(3) The average linkage uses the average distance between all pairs of objects in 

cluster Ci and cluster Cj.   

,

1
( , ) ( , )

i i j j

i j i j

o C o Ci j

D C C d o o
n n ∈ ∈

= ∑  (2.5) 

( , ( , )) ( , ) ( , )
ji

k i j k i k j

i j i j

nn
D C C C D C C D C C

n n n n
= +

+ +
 (2.6) 

 (4) The centroid linkage takes the distance between the centroids of two clusters as 

the cluster distance.  

( , ) ( , )i j i jD C C d z z=  (2.7) 

2
( , ( , )) ( , ) ( , ) ( , )

( )

j i ji
k i j k i k j i j

i j i j i j

n n nn
D C C C D C C D C C D C C

n n n n n n
= + −

+ + +
 

(2.8) 

 (5) The Ward’s linkage is called the minimum variance method since it uses the 

increment of the within-class sum of squared errors when joining clusters Ci and Cj as the 

cluster distance between cluster Ci and cluster Cj.   
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2( , ) ( , )
i j

i j i j

i j

n n
D C C d z z

n n
=

+
 (2.9) 

( , ( , )) ( , ) ( , ) ( , )
j ki k k

k i j k i k j i j

i j k i j k i j k

n nn n n
D C C C D C C D C C D C C

n n n n n n n n n

++
= + −

+ + + + + +
 

(2.10) 

Non-hierarchical partition clustering employs an iterative approach to group data into 

a pre-specified number by minimizing a sum of weighted within-cluster distances between 

every object and its cluster center.  

 minimize 
1

( ) ( , )
n

i i

i

f Z w D Z o
=

= ∑
 

(2.11) 

The weight,
iw > 0, modifies the distances. If treat the weighted distance ( , )i iw D Z o  as 

a “cost”, we formulate it as a standard discrete optimization problem.   

Let ijx be a decision variable  

1 if object is assigned to the  cluster  

0 otherwise                                       

th

ij

i j
x

 
= 


 

To ensure that every object is assigned to exactly one cluster, it has  

1

1
k

ij

j

x i
=

= ∀∑  

The interpretation of the notation is as  

i : index of objects; 

j : index of clusters; 

dij : distance between object i and the center of cluster j.  

 minimize 
1 1

( )
n k

i ij ij

i j

f X w d x
= =

= ∑∑
 

(2.12) 

subject to  

1

1
k

ij

j

x i
=

= ∀∑  

{0,1} ,ijx i j∈  ∀  
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By selecting a vector of cluster centers from the set of feasible alternatives defined by 

the constraints, the model achieves the minimum total cost, namely, the minimum total 

weighted within-group distance over all groups.  

Unfortunately, this problem is NP-hard even for k = 2 (Drineas et.al, 2004). It is 

impossible to find exact solutions in polynomial time unless P = NP. However, there are 

some efficient approximate approaches, such as k-means algorithms. 

2.1.2  Categorical Clustering 

For categorical data which has no order relationships, conceptual clustering 

algorithms based on hierarchical clustering were proposed. These algorithms use conditional 

probability estimates to define relations between groups. Intra-class similarity is the 

probability Pr(ai = vij |Ck) and inter-class dissimilarity is the probability Pr(Ck |ai = vij), where 

ai = vij is an attribute-value pair representing the ith attribute takes its jth possible value. 

Category Utility (CU) is a heuristic evaluation measure (Fisher, 1987) to guide construction 

of the tree in systems COBWEB (Huang and Ng, 1999) or its derivatives, e.g., COBWEB/3 

(McKusick and Thomson, 1990), and ITERATE (Biswas et al., 1998). CU attempts to 

maximize both the probability that two objects in the same cluster have attribute values in 

common and the probability that objects from different clusters have different values. ROCK 

(Guha et al., 1999) is a clustering algorithm that works for both boolean and categorical 

attributes. This algorithm employs the concept of links to measure the similarity between a 

pair of data points. The number of links between a pair of points is the number of common 

neighbors shared by the points. Clusters are merged through hierarchical clustering which 

checks the links while merging clusters. The main objective of the algorithm is to group 

together objects that have more links. CACTUS (Ganti et al., 1999) is a hierarchical 

algorithm to group categorical data by looking at the support of two attribute values. Support 

is the frequency of two values appearing in objects together. The higher the support is, the 

more similar the two attribute values are. The two attribute values are strongly connected if 

their support exceeds the expected value with the assumption of attribute-independence. This 

concept is extended to a set of attributes that pair wise strongly connected. Finding the co-

occurrence of a set of attribute values is intensive in computational complexity.   
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2.1.3  Mixed Clustering 

Clustering algorithms are designed for either categorical data or numeric data. 

However, in the real world, a majority of datasets are described by a combination of 

continuous and categorical features. A general method is to transform one data type to 

another. In most cases, nominal attributes are encoded by simple matching or binary 

mapping, and then clustering is performed on the new-computed numeric proximity.   

Binary encoding transforms each categorical attribute to a set of binary attributes, and 

then encodes a categorical value to this set of binary values. Simple matching generates 

distance measurement in such a way that yields a difference of zero when comparing two 
identical categorical values, and a difference of one while comparing two distinct values. 

However, the coding methods have the disadvantages of (1) losing information derivable 

from the ordering of different values, (2) losing the structure of categorical value with 

different levels of similarity, (3) requiring more space and time when the domain of the 

categorical attribute is large, (4) ignoring the context of a pair of values, e.g., the co-

occurrence with other attributes, and (5) giving different weight to the attributes according to 

the number of different values they may take. Moreover, if quantitative and binary attributes 

are included in the same index, these procedures will generally give the latter excessive 

weight (Goodall, 1966).   

An alternative approach is to discretize numeric values and then apply symbolic 

clustering algorithms. The discretization process often loses the important information 

especially the relative difference of two values for numeric features. In addition, it causes 

boundary problem when two close values near the discretization boundary may be assigned 

to two different ranges. Another difficult problem is to estimate the optimal intervals during 

discretization.   
Huang (1998) extended k-modes to mixed datasets and developed k-prototype 

algorithm. The distances of two types of features are separately calculated. The numerical 

distances are measured by Euclidean distances, while the categorical distances are measured 

by simple matching. The centers of categorical attributes are defined as the modes in the 

cluster. Ahmad and Dey (2007) proposed a fuzzy prototype k-means algorithm. Similar to k-

prototype, the cost function is made up of two components. The difference is that the 



www.manaraa.com

11 

 

categorical distances are measured by the co-occurrence of two attributes and the categorical 

cluster centers are the lists of values in every attribute with their frequencies in the cluster. 

Modha and Spangler (2003) used k-means to cluster mixed datasets, but they carefully chose 

the weights for different features by minimizing the ratio of the between-cluster scatter 

matrix and the with-cluster scatter matrix of the distorted distance.   

ECOWEB (Reich and Fenves, 1991) defines Category Utility measurement in 

numeric attributes by approximation of the probability in some user-described interval, which 

has greatly impact on the performance. AUTOCLASS (Cheesman and Stutz, 1995) assumes 

a classical finite mixture distribution model on the data and uses a Bayesian method to 

maximize the posterior probability of the clustering partition model given the data. The 

number of classes in the data is pre-specific. The computational complexity is extremely 

expensive. SBAC (Li and Biswas, 2002) is a hierarchical clustering of mixed data based on 

Goodall similarity measurement with the assumption of attribute-independence. The distance 

exploits the property that a pair of the objects is closer than other pairs if it has an uncommon 

feature. This algorithm is computationally prohibitive and demands huge memory. Hsu and 

his colleagues (2007) exploited the semantics property in the domain of categorical attributes 

and represented each attribute with a tree structure whose leaves are the possible values of 

this attribute and the links associate with some user-specified weights. This hierarchical 

distance scheme is integrated with agglomerative hierarchical clustering and compared to 

binary coding and simple matching.  

Some fuzzy clustering algorithms are proposed recently to attack the dataset with 

mixed features. Unlike hard clustering where each object belongs to only one cluster, fuzzy 

clustering algorithms assign each object to all of the clusters with a certain degree of 

membership. Yang et al. (2004) investigated symbolic dissimilarity that is originally 

proposed by Gowda and Diday (1991) and modified the three components parts of 

dissimilarity measure. This fuzzy clustering has the strength to handle the categorical data 

and fuzzy data. GFCM (Lee and Pedrycz, 2009) used a fuzzy center instead of a singleton 

prototype for the categorical components, which took a list of partial values of a categorical 

attribute with their frequencies in the cluster. The size of the values in the prototype is an 

input parameter. Besides searching for optimal membership matrix and prototype matrix, the 
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algorithm has to choose a set of values from a categorical attribute domain and present them 

in the prototype. The size of the labels and the fuzzification coefficients affect the 

performance.  

2.2  Cluster Validation  

Clustering algorithms expose the inherent partitions in the underlying data, while 

cluster validation methods are able to evaluate the result clusters quantitatively and 

objectively, e.g., whether the cluster structure is meaningful or just an artifact of the 

clustering algorithm. There are two main categories of testing criteria, known as external 

indices and internal indices. External indices are distinguished from internal indices by the 

present of priori information of known categories.  

2.2.1  External Indices 

Given a priori known cluster structure (P) of the data, external indices evaluate a 

clustering structure resulting from cluster algorithms (P′) based on counting the pairs of 

points on which two partitions agreement and disagreement. A pair of points can fall into one 

of the four cases as below: 

a : number of point pairs in the same cluster in both P and P′ 

b : number of point pairs in the same cluster in P but not in P′ 

c : number of point pairs in the same cluster in P′  but not in P 

d : number of point pairs in different clusters under both P and P′ 

 

Wallace (1983) proposed the two asymmetric criteria W1, W2 as  

 W1 (P, P′) =
a

a b+
  and (2.13) 

 W2 (P, P′) =
a

a c+
 (2.14) 

representing the probability that a pair of points which are in the same cluster in P 

(respectively, P′) are also in the same cluster under the other clustering.  

Fowlkes and Mallows (1983) took the geometric mean of the asymmetric Wallace 

indices and introduced a symmetric criterion 
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 FM (P, P′) = .
a a

a c a b+ +
 (2.15) 

The Fowlkes-Mallows index assumes the two partitions are independent.   

The Rand index emphasizes the probability that a pair of points in the same group or 

in different groups in both partitions while Jaccard’s coefficient does not take an account into 

‘conjoint absence’ and only measures the portion of pairs in the same cluster.  

The Rand index (Rand, 1971) 

 R (P, P′) =
a d

a b c d

+
+ + +

 (2.16) 

The Jaccard index (Jain and Dubes, 1988) 

 J (P, P′) =
a

a b c+ +
 (2.17) 

2.2.2  Internal Indices 

Internal indices are validation measures which evaluate clustering results using only 

information intrinsic to the underlying data. Without true cluster labels, estimating the 

number of clusters, k, in a given dataset is a central task in cluster validation. Overestimation 

of k complicates the true clustering structure, and makes it difficult to interpret and analyze 

the results; on the other hand, underestimation causes the loss of information and misleads 

the final decision. In the following section, we will briefly review several well-known 

indices. 

One of the oldest and most cited indices is proposed by Dunn (Dunn, 1974) to 

identify the clusters that are compact and well separated by maximizing the inter-cluster 

distance while minimizing the intra-cluster distance. The Dunn index for k clusters is defined 

as 

1, , 1, ,2
1, ,

( , )
* arg max ( ) min min ,

max ( )

i j

i k j i kk m
m k

D C C
k DU k

diam C= = +≥
=

      = =       
⋯ ⋯

⋯  

(2.18) 

where D(Ci, Cj) is the distance between two clusters Ci and Cj as the minimum distance 

between a pair of objects in the two different clusters separately and the diameter of cluster 

Cm, diam(Cm), as the maximum distance between two objects in the cluster. The optimal 
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number of clusters is calculated at the largest value of the Dunn index. The Dunn index is 

sensitive to noise. By redefinitions of the cluster diameter and the cluster distance, a family 

of cluster validation indices is proposed (Bezdek and Pal, 1998).  

Based on the ratio of the between-cluster scatter matrix (SB) and the within-cluster 

scatter matrix (SW), the Calinski-Harabasz index (Calinski and Harabasz, 1974) is the best 

among the top 30 indices ranked by Milligan and Cooper (1985). The optimal number of 

clusters is determined by maximizing CH(k).   

( )
2

( ) / ( 1)
* arg max .

( ) / ( )k

Tr k
k CH k

Tr n k≥

 −
= = 

− 
B

W

S

S
 

(2.19) 

Similar to the Calinski-Harabasz index, the Davies-Bouldin index (Davies and 

Bouldin, 1979) obtains clusters with the minimum intra-cluster distance as well as the 

maximum distance between cluster centroids. The minimum value of the index indicates a 

suitable partition for the dataset.  

1, , ,2 1

( ) ( )1
* arg min ( ) max

( , )

k
i j

j k i jk i i j

diam C diam C
k DB k

k d z z= ≠≥ =

  + 
= =       

∑
⋯

 

(2.20)

 

where the diameter of a cluster is defined as  

21
( ) ( , ) .

i

i i

o Ci

diam C d o z
n ∈

= ∑
 

(2.21) 

The Silhouette index (Kaufman and Rousseeuw, 1990) computes for each object a 

width depending on its membership in any cluster. For the ith object, let ai be the average 

distance to other objects in its cluster and bi the minimum of the average dissimilarities 

between object i and other objects in other clusters. The silhouette width is defined as (bi - 

ai)/max{ai, bi}. Silhouette index is the average Silhouette width of all the data points. The 

partition with the highest SI(k) is taken to be optimal.  

( )
2 1

( )1
* arg max

max( , )

n
i i

k i i i

b a
k SI k

n b a≥ =

 −
= = 

 
∑

 

(2.22) 

The Geometric index (Lam and Yan, 2005) is recently proposed to accommodate data 

with clusters of different densities and overlap clusters. The optimal number of clusters is 

found by minimizing the GE(k) index. Let d be the dimensionality of the data and λpq the 
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eigenvalue of the covariance matrix from the data. D(Ci, Cj) is the inter-cluster distance 

between cluster i and cluster j. The GE index is constructed as 

2

1

12
1 ,

2

* arg min ( ) max .
min ( , )

d

ji

j

i kk i j
j k i j

k GE k
D C C

λ
=

≤ ≤≥
≤ ≤ ≠

   
   
   = =  
  
  

  

∑

 

(2.23) 

Unlike the criteria mentioned above, which employ the geometric-like distance, CU 

and entropy-based methods use the counting scheme to evaluate the performance of a 

categorical clustering algorithm. CU of a partition with k clusters is defined in Eq. 2.24. A 

cluster solution with high CU is desired since it improves the likelihood of similar patterns 

falling into the same cluster.  

2 2

2 1

* arg max ( ) Pr( | ) Pr( )
k

l
i ij l i ij

k l i j

n
k CU k a v C a v

n≥ =

    = = = − =   
   

∑ ∑∑
 

(2.24) 

Entropy-based method computes the expected entropy of a partition with respect to a 

class attribute ai. The smaller the expected entropy, the better quality of the partition with 

respect to ai. It is expected that the expected entropy decreases monotonically as the number 

of clusters increases, but from some point onwards the decrease flattens remarkably. Rather 

than searching for the location of an “elbow” on the plot of the expected entropy versus the 

number of clusters, Chen and Liu (2009) calculated the second order difference of 

incremental expected entropy of the partition structure, which is called the BK index. The 

largest value indicates an elbow point which is the potential number of clusters.   

2

* arg min E ( ) Pr( | ) log Pr( | )
i

l
a i ij l i ij l

k l j

n
k k a v C a v C

n≥

 
= = − = =   

 
∑ ∑

 

(2.25) 

The significance test on external variables is other commonly used method. It 

compares the partitions using variables not used in the generation of those clusters. 

Although the validity index for mixed features is relatively sparse, there are a few to 

evaluate fuzzy clustering algorithms based on the fuzzy partition matrices and/or 

dissimilarity among objects and prototypes. For example, Lee (2009) proposed an index 

called CPI(k) as  
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(2.26) 

where uij is the membership of object oi in cluster j, 0 ≤ uij ≤ 1. sim(oi, oj) is any similarity 

measure between object oi and oj.   

2.3  Summary and Discussion 

Real-life systems are overwhelmed with large mixed datasets that include numeric 

and nominal data. However, the majority of the clustering algorithms are designed for one 

data type. This study will propose a novel approach to partition mixed dataset, evaluate the 

resulting cluster solutions, and determine the optimal number of clusters. 
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CHAPTER 3 HIERARCHICAL CLUSTERING FOR MIXED DATA 

Many partitioning algorithms require the number of classes, k, as a user-specified 

parameter. However, k is not always available in many applications. Hierarchical clustering 

does not need this priori information. This method creates a sequence of nested partitions. In 

order to form a set of clusters, a cutting point is determined by using some expert experiences 

to interpret each branch in the dendrogram, or by applying some validity indices to estimate 

where the best levels are. Our algorithm can be divided into two main procedures. First, a 

cluster tree is constructed by a hierarchical algorithm in a bottom up manner; and then a 

search procedure is followed to obtain the optimal number of classes.  

In this chapter, we present the first procedure that generates a cluster tree by 

hierarchical clustering on the distances from a co-occurrence measure. We compare four 

distances measurements capable of handling mixed data when used with agglomerative 

hierarchical clustering, and provide a solution in which the co-occurrence distance would 

outperform other distances. The performance is tested on some standard real-life as well as 

synthetic datasets.  

3.1  Motivation 

A distance measure that has been previously found to perform well for the fuzzy 

prototype k-means algorithm (Ahmad and Dey, 2007) will be adopted to define the proximity 

between pairs of objects. Without the assumption about data distribution, it considers the 

strong co-occurrence probability of two attribute values in a certain class.  

Intuitively, some attribute values are associated with different classes. For example, 

the color of a banana is yellow while the color of a strawberry is red. If a basket has only 

strawberries and bananas and, by a chance, we pick a yellow fruit, then it must be a banana. 

Likewise, if we know the type of the fruit in this basket, then the color can be decided. 

Yellow and red have strong correlations with bananas and strawberries, respectively. The 

color of the fruit can distinguish each type of the fruit. In this context, we can assume the 

distance between yellow and red is large with respect to type of fruit. However, if we harvest 

yellow lemons and red tomatoes, and put them into this basket, then it is difficult to tell the 
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types of the fruits from their colors. In this situation, in terms of type of fruit, we can say a 

small distance between yellow and red. Therefore, a distance would be defined based on the 

co-occurrence of colors with respect to fruit types. A strong occurrence relationship between 

the two levels of color and type of fruit results in a large distance and vice versa.  

Based on the power of an attribute to separate data into homogenous segments, 

Ahmad and Dey (2007) defined the distance between categorical attribute values and 

calculated the weights for numeric attributes by exploiting this co-occurrence relation. The 

overall distance is a sum of categorical and the weighted numeric distances and applied in the 

k-means algorithm to cluster mixed datasets. The comparative study showed good 

performance. Ahmad and Dey’s fuzzy prototype k-means method does not work in 

applications without a known number of groups. Unlike Ahmad and Dey’s method, 

therefore, our study employs this distance in a hierarchical algorithm to derive a tree 

structure, which can generate a series of partitions with successive cluster numbers. These 

partitions will be evaluated by the validity index proposed in the following chapter. In this 

section, we compare the hierarchical algorithm with four distances capable of handling 

mixed data types in terms of clustering accuracy, and exploit the properties of the datasets 

would take the advantage of the co-occurrence distance when used with agglomerative 

hierarchical clustering.   

3.2  Background 

Traditional approaches of clustering datasets with mixed data types adopt distance 

representations by converting one type of attributes to another. One way is to transfer 

categorical data into numeric data by simple matching or binary coding. On the other hand, 

the continuous attributes are discretized into categorical data. As mentioned in the preceding 

chapters, these two ways are not effective in dealing with the particular mixed datasets. Some 

researchers have made efforts to balance numeric and nominal distances. Huang (1998) 

introduced a weight factor for categorical distance in his k-prototype algorithm. Modha and 

Spangler (2003) went further and found the optimal weight that minimizes the within-cluster 

weighted distance while maximizing the between-cluster weighted distance. The SBAC 

method (Li and Biswas, 2002) adopted the Goodall distance based on the concept that two 
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species are closer if they have rarer characteristics in common. From the view of probability, 

the Goodall distance unites categorical and numeric distances within a common framework. 

Ahmad and Dey (2007) defines a distance by exploiting a co-occurrence relation of values in 

different attributes. The k-prototype, the optimal weight, the Goodall, and the co-occurrence 

distances are discussed in greater details below.  

3.2.1  Notation 

DS(U, A) represents a set of objects in terms of their attributes, where U is a 

nonempty finite set of objects and A is a nonempty finite set of attributes. For example, a 

strawberry and a banana are two objects in U, while color, type, and weight of the fruit are 

the attributes in A. Let n be the number of objects and m the number of attributes. There 

exists a function between the set of objects and each attribute such that :
pp aa U V→ for any 

ap∈A (p = 1, 2, …, m), i.e., ap(xi)
paV∈ (i = 1, 2, …, n), xi∈U, where 

paV is called the domain 

of attribute ap. ap(xi) is the value of object xi on attribute ap. For example, the color of a 

banana is denoted as acolor(banana) = yellow. Generally speaking, the set of attributes can be 

divided into two subsets Ar and Ac according to data type, where Ar is the set of numeric 

attributes and Ac the set of categorical attributes. Thus, r cA A A= ∪ . If A is the set including 

color, type, and weight of the fruit, then Ac is the set with color and type of the fruit while Ar 

contains the weight of the fruit. mr and mc are the numbers of numeric and categorical 

attributes, respectively. r cm m m= + . Given ap∈A, x, y∈U, if ap(x) = ap(y), then x and y are 

said to have no difference w.r.t. ap. The distance of x and y on ap is zero, denoted 

by ( , ) 0pD x y =  when ap(x) = ap(y). For example, if one fruit in the basket is a banana and 

another is a lemon, we know their colors are yellow. It can be denoted as acolor(banana) = 

acolor(lemon), or ( , ) 0colorD banana lemon = . The total distance between two objects x, y is 

defined as d(x, y).  

Let Rj = {(x, y) ∈ U×U: aj(x) = aj(y)}. Thus, the relation Rj partitions U into disjoint 

subsets according to values on attribute aj. These subsets are called equivalence classes of aj. 

The equivalence class including x is Sj(x), Sj (x) = { y ∈ U : (x, y) ∈ Rj }. For example, if x 

represents a banana, then Scolor(banana) contains all the fruits in the basket that have the 
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same color as the banana. Thus, Scolor(banana) is the set of all bananas and lemons in the 

basket. Wj(Bj) = { Sj(x) : aj(x) ∈ Bj, Bj
paV⊂ }, the set of objects whose values on aj are among 

Bj. If the objects having the same value w.r.t. aj should all be included in one segment, either 

Wj(Bj) or U/Wj(Bj). U/Wj(Bj) is called the simply complement of Wj(Bj), usually denoted by 

~Wj(Bj). If Wcolor({yellow}) represents the set of fruits with a yellow appearance, then 

~Wcolor({yellow}) is the set of fruits containing colors except yellow.  

3.2.2  k-prototype Distance 

In order to cluster mixed datasets, Huang (1998) used a user-specified weight γ to 

balance the distance over numeric and nominal attributes and applied this measure in his k-

prototype algorithm. The numeric distance is the squared-Euclidean distance; and the 

categorical distance is simple matching. All numeric attributes are normalized to the range of 

[0, 1]. A small γ value indicates that the clustering is dominated by numeric attributes while a 

large γ value implies that categorical attributes dominate the clustering. Huang suggested the 

weight should be in the range of [0.5, 1.4]. The total distance between a pair of objects x and 

y is formulated as, 

2

( ) ( )
( , ) ( , ),

max( ) min( )
r ci i

ii i

i A i Aa a

a x a y
d x y D x y

V V
γ

∈ ∈

 − 
= + 

−  
∑ ∑

 

(3.1) 

and the computational complexity is O(mn
2
). 

3.2.3  Optimal Weight Distance 

Modha and Spangler (2003) used optimization techniques to further balance numeric 

and nominal distances. Instead of a user-specified weight, their method searches for an 

optimal weight to minimize the ratio of the within- and between-cluster weighted distances 

when the number of clusters is given.  

The numeric features are standardized based on mean and standard deviance, and 

then the distance is found by taking the squared-Euclidean distance. Each categorical value is 

represented by a binary vector using 1-of-v encoding (v is the number of attribute values), 

and the distance is found by taking cosine distance. The optimal weight distance combines 

the weighted distances of the two data types. 
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(3.2)

 

In order to get the optimal weight, the number of clusters should be known in 

advance. Since the objective function of this minimization problem is nonlinear, it is hard to 

pursue an optimal solution. Modha and Spangler calculated the objective value by taking a 

large number in the interval [0, 1] in order to search the best one. The computational 

complexity is O(imn
2
) when choosing i iterations to search the weight.  

3.2.4  Goodall Distance 

Goodall (1966) proposed a similarity index based on the agreement that a pair of 

objects having an uncommon value of an attribute is closer than other pairs only possessing a 

common value among them. For example, a salmon and a bass have scales but a dolphin and 

a salmon have vertebra. Since there are more animals having vertebra than those having 

scales, a salmon is closer to a bass than to a dolphin. The author made an assumption about 

independent attributes. Li and Biswas (2002) adopted this distance in the SBAC method. The 

distance for non-identical nominal values is one, as D
i
(x, y) = 1, ai(x) ≠ ai(y), ai∈Ac. For 

example, in the case of the fruit basket, the distance between yellow and red is formulated 

as ( , ) 1colorD banana strawberry = . However, ( , )colorD banana lemon  is much more complex. 

For a pair of identical nominal values, the distance is the sum of the possibilities of picking 

an identical value pair whose value is equally or more similar to the pair in question, that is, 

having lower or equal frequency. The formulation is as follows when s = ai(x) = ai(y), ai∈Ac.  

, ( ) ( )

( )( ( ) 1)
( , )

( 1)
ai

i

r V freq r freq s

freq r freq r
D x y

n n∈ ≤

−
=

−∑
 

(3.3) 

The distance between identical numeric values is calculated as their nominal 

component using equation (3.3).   

To calculate distance of two different numeric values, divide the domain into 

successive segments by the unique values of a numeric feature and count the frequency in 

every interval first. Sum the possibilities in a smaller range or equal-width range (l, m) but 

with less or equal frequency. Given s= ai(x), t= ai(y), ai(x) ≠ ai(y), ai∈Ar, the distance on a 

numeric attribute Ai is defined as follows. 
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(3.4) 

When having calculated the distances for each attribute, we use χ
2
 transformation to 

get corresponding chi-square values. The sum of these values is distributed as χ2 with the 

degree of freedom two times of the number of attributes. The probability of this sum is the 

Goodall distance of a pair of objects.   

It takes O(n+vilogvi) to compute the nominal distance for a categorical attribute with 

vi levels. For mc attributes, it needs mc such calls. Therefore, the running time is 

O(nmc+mqclogqc), where qc = max{
iaV , ai∈Ac}. Sorting the intervals of a numeric attribute 

with vi unique values requires O(vi
2
logvi). Given lj, the number of the intervals in jth equal-

range intervals, the same-range intervals are sorted by their frequencies in 

2

1

( log )
iv

j j

j

O l l
=

∑ , 

which is upper bounded by 
2

( log )iO v l l and l is the maximum number over all lj. Accordingly, 

the computational complexity of numeric distances is O(nmr+mrqr
2
logqr+mr qr

2
llogl); and the 

total running time is O(nm+mqclogqc+mqr
2
logqr+mqr

2
llogl), where qr is the number of 

maximum number of unique values in the numeric attributes. Even in an ordinary dataset, the 

number of qr is huge.   

3.2.5  Co-occurrence Distance 

Ahmad and Dey (2007) exploit the property that if there is a stronger connection of 

values on ai (e.g., s and t) with different values on aj, then s and t are more powerful to 

separate a dataset into pure segments w.r.t. aj. The extreme case is when s and t associate 

with different values in aj.  

Given Wj(Bj), let Pi(Wj(Bj)|s) be the conditional probability w.r.t. Wj(Bj) when the 

value of object x on attribute ai is s, and Pi(~Wj(Bj)|s) the conditional probability of set 

U/Wj(Bj) when the value of object x on attribute ai is s, where s
iaV∈ , ai∈Ac. These two 

formulations are  
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The definition of the distance of two levels in categorical attribute ai with respect to 

attribute aj is  

{ }( , ) max P ( ( ) | ) P ( ( ) | ) 1.0 ,
j

ij

i j j i j j
B

D s t W B s W B t= + ∼ −  (3.7) 

where s, t
iaV∈ , s ≠ t, ai, aj∈Ac. Ahmad and Dey (2007) showed an optimal solution would be 

obtained in polynomial algorithm in terms of 
jaV . 

The distance of two levels in categorical attribute ai is the average of D
ij
(s, t) over all 

categorical attributes but ai. Given s = ai(x), t = ai(y), s ≠ t, ai∈Ac,  
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The distance between two values on numerical attribute ai∈Ar is 
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−
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which is equivalent to normalizing numerical attribute ai first and then taking the absolute 

value of the difference.  

The distance between every pair of objects w.r.t. attribute set A is defined as  

2

( ) ( )
( , ) ( , ),

max( ) min( )
r ci i

ii i
i

i A i Aa a

a x a y
d x y w D x y

V V∈ ∈

 − 
= + 

−  
∑ ∑

 

(3.10) 

where wi is the weight of real attribute ai. The weight wi is introduced to modify numerical 

distances based on separating power to divide the dataset into pure segments. First, a 

numerical attribute ai∈Ar will be discretized into v intervals, where v is a predefined integer. 

wi is calculated as Eq. 3.11 to reveal the significance of attribute ai to separate the dataset. In 
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s and t are the new assigned categorical values for discretized numerical attribute ai and vi is 

the number of categorical values, vi = 
iaV .  

The running time of calculating the co-occurrence distance is O(n
2
m+nm

2
+q

3
m

2
), 

where q = max{
iaV , ai∈Ac}.   

3.3  Proposed Hierarchical Clustering Method 

In this section, we will integrate an agglomerative clustering algorithm with the four 

distances measures capable of handling mixed datasets.  

3.3.1  Agglomerative Hierarchical Algorithm 

Agglomerative hierarchical algorithms start from singleton clusters and merge those 

clusters with minimal distances until all objects are included in one cluster. The distance 

between individual objects is as important in creating clusters as the cluster distance, but the 

cluster distance has greater weight on creating the final partition. Although there are a large 

number of distance definitions between a cluster and a newly formed cluster, we choose 

Ward’s method to minimize the increase of the within-class sum of the squared errors since 

we wish the formed clusters would be compact, not chain-like or with one object. The 

within-class sum of the squared errors is the sum of squared-Euclidean distance between 

each object to its nearest cluster center and is formulated as 

2

i k

k i

E o z= −∑∑  (3.12) 

where oi is an object in the kth cluster and zk the centroid of this cluster. If two clusters Ci and 

Cj are merged, the increment of E will be calculated with the following equation: 

2

.
i j

ij i j

i j

n n
E z z

n n
∆ = −

+
 (3.13) 

Thus, the distance between two clusters Ci and Cj is defined as 
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The distance between a cluster Ck and a newly emerged cluster (Ci and Cj) is 

determined by   
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(3.15) 

which would be used to update cluster distances after a merge. 

The following procedure summarizes the agglomerative hierarchical algorithm.  

INPUT.  Distance matrix for each pair of objects (x, y) ∈ (U×U).  

OUTPUT.  A dendrogram. 

Initial: Every object forms a singleton cluster. There are n clusters. 

Step 1: Search the minimal cluster distance. Assume between Cluster i and Cluster j.  

Step 2: Merge Cluster j into Cluster i.  

Step 3: Delete the distances between Cluster j and other clusters. 

Step 4: Update the distances between Cluster i and other clusters using Eq. 3.15.   

Step 5: Repeat Steps 2 – 4 until all objects in the same cluster.  

 

The computational complexity for the agglomerative clustering algorithm, O(n
2
), is 

well-established in the literature (Jain and Dubes, 1988). 

3.3.2  Evaluation Methodology 

In the chapter on literature review, we discussed that internal criteria such as validity 

indices could be used to discover inherent data structures. However, in this chapter, assuming 

pre-classified data is provided, we can adopt an external criterion which measures the 

performance of hierarchical clustering algorithms with various distances against the classes 

assigned a priori. Clustering accuracy is used as a main external measure of clustering 

results. Let ai denote the number of objects correctly assigned to the true class Ci, while bi 

denotes the number of objects incorrectly assigned to the true class Ci and ci the number of 

objects incorrectly rejected from the true class Ci. Clustering accuracy is defined as  

1

1
.

k

i

i

d a
n =

= ∑  (3.16) 
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Clustering error is defined as e = 1 – d. The error ei for class Ci is 1 – ai/n. The 

precision pi and recall ri of class Ci is given by  

 i
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+
 

The average precision and average recall are 
1

1 k

i

i

p
k =
∑  and 

1

1 k

i

i

r
k =

∑ , respectively. Since 

1 1

( ) ( )
k k

i i i i

i i

a b a c n
= =

+ = + = ∑ ∑ , the average precision, the average recall, and clustering 

accuracy are the same.   

3.4  Experiment 

The algorithm will be tested on two kinds of datasets, synthetic and real. The use of 

constructed artificial datasets allows us to control their structures and facilitates investigation 

of which distance brings better results in which scenarios.  

In order to investigate the performance of the agglomerative hierarchical algorithm 

integrated with four different distances, namely, the co-occurrence distance, the Goodall 

distance, the k-prototype distance, and the optimal weight distance, we cut the generated trees 

according to the priori information, the true number of clusters, and then compare the set of 

generated clusters with the true classes.  

The weights in both the k-prototype and optimal weighted distances need to be 

decided. The k-prototype distance needs a user-specified weight γ to balance the nominal and 

numeric distances. As Huang suggested, the weight in k-prototype distance, γ, should be in 

the range of [0.5, 1.4]; therefore, in the experiment, γ will be set as {0.5, 0.7, 0.9, 1.1, 1.3}. 

We pick the solution with the highest accurate rate. What’s more, the weight w in the optimal 

weight distance needs intensive search in the range of [0, 1]. We therefore set w from 0 to 1 

by increasing 0.05 and calculate the ratio of the within-cluster and between-cluster weighted 

distances given the number of clusters. The best solution is the one with the minimal ratio.    
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3.4.1  Synthetic Datasets 

3.4.1.1  Datasets Description 

We create 29 synthetic datasets, labeled ds1 through ds29, to explore various dataset 

structures. Dataset ds1 contains two categorical attributes (Cat.1 and Cat.2) and two real 

attributes (Real.1 and Real.2). There are total 600 instances, equally distributed into three 

classes, CLS1, CLS2, and CLS3. The categorical attribute values are predefined and assigned 

to each class in equal proportion. Cat.1 has a unique symbolic value for each class, while 

Cat.2 has two distinct symbolic values for each class. The real attribute values are generated 

by sampling normal distributions with different means and standard deviations for each class. 

The three clusters are well-separated from each other, and thus relatively easy to identify.  

Cat.1 Cat.2 Real.1  Real.2 Class # obs 

M1 A2 N(4, 0.3) N(24, 3) CLS1 100 

 
B2 

   
100 

F1 C2 N(5, 0.3) N(26, 3) CLS2 100 

 
D2 

   
100 

G1 E2 N(6, 0.3) N(28, 3) CLS3 100 

  F2       100 

Table 1: The base dataset ds1 — three well-separated clusters. 

The dataset ds1 may be considered as the base dataset. To analyze how degrees of co-

occurrence relations affect clustering methods, a dataset, ds2, is constructed by introducing 

an additional categorical attribute, Cat.3, into the base dataset. Real.2 is normally distributed 

with mean of 26 and deviation of 3, but Real.1 is corrupted by introducing 20% noise from 

CLS3. The value of Cat.3 is assigned according to its Real.1 value. Thus, there is a strong 

connection between Cat.3 and Real.1, but a weak association between Real.1 and the target 

class. The datasets ds3 and ds4 increase the noise from CLS3 by 40% and 60%, respectively.   

Cat.1 Cat.2 Cat.3 Real.1  Real.2 Class # obs   

M1 A2, B2 A3 N(4, 0.3) 
 

CLS1 160 

  
C3 N(6, 0.3) 

  
40 

F1 C2 B3 N(5, 0.3) N(26, 3) CLS2 100 

 
D2 

    
100 

G1 E2 C3 N(6, 0.3) 
 

CLS3 100 
  F2         100 

Table 2: ds2 — co-occurrence with 20% noise. 
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A stronger co-occurrence relation is established in the datasets ds5 – ds7 by 

associating Real.2 with Cat.3. The means of normal distributions in Real.2 are assigned 

according to the values of Cat.3. Therefore, Real.1, Real.2, and Cat.3 have a co-occurrence 

relation. However, the contributions of Cat.3, Real.1, and Real.2 to the target class are 

weakened. Class 1 is corrupted by introducing noise from Class 3 by 20%, 40%, and 60%, 

respectively.  

Cat.1 Cat.2 Cat.3 Real.1  Real.2 Class # obs       

M1 A2, B2 A3 N(4, 0.3) N(24, 3) CLS1 160 

  
C3 N(6, 0.3) N(28, 3) 

 
40 

F1 C2 B3 N(5, 0.3) N(26, 3) CLS2 100 

 
D2 

    
100 

G1 E2 C3 N(6, 0.3) N(28, 3) CLS3 100 
  F2         100 

Table 3: ds5 — stronger co-occurrence with 20% noise. 

The impact of non-Gaussian noise in categorical or real attributes can be observed by 

randomly picking some categorical or real attribute values in each class and switching them 

with other classes. First, we randomly choose 20 percent of the instances from each class and 

change their categorical or real values. Then, we increase the exchange rate to 40% and 60%, 

respectively. The datasets ds8 – ds10 are generated by changing their categorical values 

while ds11 – ds13 by changing real values.   

Based on ds2 and ds5, we apply the same process by exchanging the categorical 

values and real values of the instances in each class by 20%, 40%, and 60%, respectively. 

Thus, the datasets ds14 – ds25 are created.   

In order to investigate the effect of real attributes on the clustering results, we relax 

categorical attribute by assigning them equally (ds26). The target class thus, is dependent 

only on the real attributes and unrelated to the categorical attributes. In ds27, on the contrary, 

the real attribute values are sampled from an identical uniform distribution for all classes. As 

a result, the target class is dependent only on the categorical attributes and unrelated to the 

real attributes.   

Cat.1 Cat.2 Real.1  Real.2 Class # obs 

M1(⅓),  A2(1/6), N(4, 0.3) N(24, 3) CLS1 200 

F1(⅓),  …, N(5, 0.3) N(26, 3) CLS2 200 

and G1(⅓)  F2(1/6) N(6, 0.3) N(28, 3) CLS3 200 

Table 4: ds26 — clusters only dependent on real attributes. 
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Cat.1 Cat.2 Real.1  Real.2 Class # obs 

M1 A2 
  

CLS1 100 

 
B2 

   
100 

F1 C2 U(7, 13) U(26, 38) CLS2 100 

 
D2 

   
100 

G1 E2 
  

CLS3 100 

  F2       100 

Table 5: ds27 — clusters only dependent on categorical attributes. 

The last two datasets (ds28 and ds29) are created by relaxing Cat.1 and Cat.2, 

respectively. Then the class is related to the two numeric variables and one categorical 

variable.   

Cat.1 Cat.2 Real.1  Real.2 Class # obs 

M1  A2(1/6), N(4, 0.3) N(24, 3) CLS1 200 

F1  …, N(5, 0.3) N(26, 3) CLS2 200 

G1  F2(1/6) N(6, 0.3) N(28, 3) CLS3 200 

Table 6: ds29 — clusters only dependent on real attributes and Cat.1. 

3.4.1.2  Results for Four Distances 

The overall accuracy rates of the hierarchical algorithm integrated with four different 

distances are provided in the following tables (Table 7 – Table 11). For the well-separated 

base dataset (ds1), except the optimal weight distance, all other three have high accuracy. 

When introducing a new categorical variable (Cat.3) associated with Real.1 and adding some 

noise, the co-occurrence distance and the k-prototype distance still have good performance 

(see Table 7).   

  Occurr. Goodall k-prot. Opt. Weight  Description 

ds1 100.00% 94.83% 100.00% 79.00% three well-separated classes 

 
    

 
  

 
ds2 100.00% 92.83% 100.00% 62.67% occurrence + 20% noise 

ds3 100.00% 86.33% 100.00% 86.67% occurrence + 40% noise 

ds4 100.00% 79.17% 100.00% 66.33% occurrence + 60% noise 

 
    

 
  

 
ds5 100.00% 92.67% 100.00% 83.83% Stronger occurrence + 20% noise 

ds6 100.00% 86.33% 100.00% 86.67% Stronger occurrence + 40% noise  

ds7 100.00% 79.67% 100.00% 80.00% Stronger occurrence + 60% noise 

Table 7: Accuracy of synthetic datasets with co-occurrence. 
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The Goodall distance is stable when introducing categorical non-Gaussian noise. 

Although the co-occurrence distance and the k-prototype distance are insensitive to numeric 

non-Gaussian noise, their performance deteriorates quickly when a large amount of 

categorical non-Gaussian noise is introduced, as can be seen in the result of ds10 in Table 8.   

  Occurr. Goodall k-prot. Opt. Weight  Description 

ds8 80.00% 88.50% 80.00% 64.33% 20% cat. non-Gaussian noise 

ds9 60.00% 78.33% 60.00% 79.83% 40% cat. non-Gaussian noise 

ds10 40.00% 72.83% 40.00% 63.33% 60% cat. non-Gaussian noise 

 
    

 
  

ds11 100.00% 73.33% 100.00% 61.83% 20% real non-Gaussian noise 

ds12 100.00% 57.83% 100.00% 86.67% 40% real non-Gaussian noise 

ds13 100.00% 40.67% 100.00% 35.33% 60% real non-Gaussian noise  

Table 8: Accuracy of synthetic datasets when adding non-Gaussian noise. 

As can been seen in Table 9 and Table 10, when the categorical non-Gaussian noise is 

applied to the dataset having a co-occurrence relation between some attributes (e.g., Cat.3, 

Real.1, and Cat2.), the results become worse as the noise increases. On the other hand, the 

four distances are all good at handling real non-Gaussian noise, especially the co-occurrence 

distances and the k-prototype distances.   

  Occurr. Goodall k-prot. Opt. Weight  Description 

ds14 80.00% 76.83% 80.00% 75.33% 20% noise + Occur. +20% cat. non-Gau 

ds15 60.00% 61.33% 60.00% 62.00% 20% noise + Occur. +40% cat. non-Gau 

ds16 40.00% 41.67% 40.00% 54.50% 20% noise + Occur. +60% cat. non-Gau 

 
    

 
  

ds17 80.00% 76.00% 80.00% 78.33% 20% noise+S. Occur.+20% cat. non-Gau  

ds18 60.00% 58.00% 60.00% 70.17% 20% noise+S. Occur.+40% cat. non-Gau 

ds19 40.00% 31.33% 40.00% 60.50% 20% noise+S. Occur.+60% cat. non-Gau 

Table 9: Accuracy of datasets with co-occurrence & nominal non-Gaussian noise. 

  Occurr. Goodall k-prot. Opt. Weight  Description 

ds20 100.00% 87.83% 100.00% 87.83% 20% noise+Occur. + 20% real non-Gau 

ds21 100.00% 85.00% 100.00% 100.00% 20% noise+Occur. + 40% real non-Gau 

ds22 100.00% 88.17% 100.00% 99.50% 20% noise+Occur. + 60% real non-Gau 

 
        

ds23 100.00% 91.17% 100.00% 57.13% 20% noise+S. Occur.+ 20% real non-Gau 

ds24 100.00% 87.33% 100.00% 87.17% 20% noise+S. Occur.+ 40% real non-Gau 

ds25 100.00% 85.50% 100.00% 42.17% 20% noise+ S. Occur.+60% real non-Gau 

Table 10: Accuracy of datasets with co-occurrence & real non-Gaussian noise. 
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When relaxing some attributes, leading to unrelated or redundant information, the 

four distances show different behaviors. As can be seen in the results of ds26, the co-

occurrence distance is not good at discriminating real attributes, but excellent at categorical 

attributes (as shown in the result of ds27). Even one categorical attribute clearly identifying 

the class would result in a high accuracy. On the contrary, the k-prototype distance has a very 

low accuracy when relaxing the categorical attribute(s). The Goodall and optimal weight 

distances seem to be confused by the redundant information and lead to poor performance.   

  Occurr. Goodall k-prot. Opt. Weight  Description 

ds26 33.83% 76.33% 31.67% 71.33% Relax categorical variables.  

ds27 100.00% 35.17% 100.00% 62.00% Relax numeric variables.  

ds28 100.00% 87.83% 36.67% 70.17% Relax Cat. 1 

ds29 100.00% 83.00% 36.50% 60.50% Relax Cat. 2 

Table 11: Accuracy of synthetic datasets when relaxing some attributes. 

From the synthetic study, the optimal weight distance is relatively unstable in 

comparison with other three. Categorical non-Gaussian noise has great impact on the four 

distances. Their performance deteriorates quickly as the noise increases. On the other hand, 

the four distances are all good at handling real non-Gaussian noise, especially the co-

occurrence distances and the k-prototype distances. The co-occurrence distance is not good at 

discriminating real attributes, but excellent at categorical attributes. Even one categorical 

attribute clearly identifying the class would result in a high accuracy. The k-prototype 

distance has a very low accuracy when relaxing the categorical attribute(s).   

3.4.2  Real-world Datasets 

3.4.2.1  Datasets Description 

While informative, the constructed datasets may not well represent real-world data. 

Therefore, we chose six datasets from UCI ML repository (http://www.sgi.com/tech/mlc/db), 

as shown in Table 12, two datasets with mixed types (Heart Disease, Australian Credit), one 

with pure numerical attributes (Iris) and three with pure categorical attributes (Iris-Disc, 

Vote, and DNA-nominal). These datasets are either benchmark datasets widely used in 

machine learning research community or standard test beds for clustering mixed datasets. 
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Dataset # categorical var. # numeric var. # obs. # Class 

Heart Disease  8 5 303 2 

Iris 0 4 150 3 

Iris-Disc 4 0 150 3 

Vote 16 0 435 2 

Australian Credit 8 6 690 2 

DNA-nominal 60 0 3,186 3 

Table 12: Six real datasets from UCI. 

The Heart Disease data is generated at the Cleveland Clinic. It records 164 normal 

people and 139 heart patients. These 303 instances contain eight nominal and five continuous 

attributes, along with the class label: no heart disease or with different degrees of heart 

disease. In the preprocess procedure, six missing values are replaced with the modes of 

corresponding classes. Five continuous features are discretized into five equal-width 

intervals.   

The Iris dataset contains three classes of 50 instances each. The four numeric-valued 

attributes describe the sepal length, sepal width, petal length, and petal width of each plant. 

One type of Iris is linearly separable from the other two, but the latter are mixed. All the 

attributes are discretized into five equal-width intervals.   

The Iris-Disc dataset is the Iris dataset discretized using some functions in MLC++ 

discretize utility which exploit some optimal techniques for attribute discretization. Sepal 

width is converted to two levels and all other attributes to three levels.   

The Congressional Votes dataset is the United States Congressional Voting Records 

in 1984. Each record corresponds to one congressman’s votes on 16 issues (e.g., education 

spending, crime). Class label (Republican/Democrat) is provided for each instance. There are 

168 Republicans and 267 Democrats, for a total of 435.  

The Australian Credit dataset has six numeric and eight categorical attributes. 

Among 690 instances, 307 instances came from approved applications and 383 from rejected 

applications. This dataset includes the nominal features with not only small numbers of 

values, but also large numbers of values, e.g., 14-value and 8-value attributes. In data 
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preprocess phase, we combine some levels and get four values for each attribute. The 

numeric features are discretized into intervals with equal width.  

The DNA-nominal dataset has 3,186 primate splice-junction gene sequences 

described by 60 nucleotides. These 60 attributes are represented by A, C, G, or T. A class 

label – acceptor, donor, or non-splice – is attached with each instance. The dataset contains 

records for 767 acceptors, 765 donors, and 1654 that are neither of them.  

3.4.2.2. Results for Four Distances 

 The results of the hierarchical algorithm with four distances are displayed in Table 

13, and the corresponding weights of the k-prototype and optimal weight distances are 

provided. The bold font highlights the best solution for each dataset.   

  Co-occurrence Goodall k-prototype Optimal Weight  

Heart 76.24% 77.23% 81.52% γ = 0.7 78.55% w = 0.80 

Iris 88.67% 90.00% 88.67%   82.67%   

Iris-Disc 94.67% 96.00% 96.00%   96.00%   

Vote 84.60% 91.72% 86.21% γ = 0.9 84.37%   

Aus-Credit 84.78% 71.74% 83.48% γ = 0.9 60.15% w = 0.65 

DNA 81.33% 73.98% 78.15% γ = 0.9 76.15%   

Table 13: Accuracy of real datasets with four distances. 

Although the co-occurrence distance is not always better than other distances when 

used with hierarchical clustering, the proposed algorithm has some advantages over the other 

distance representations. First, the running time to calculate the co-occurrence distance is not 

as prohibitive as to obtain the Goodall distance since the latter costs a polynomial in the 

unique values of the numeric attributes. This number is much larger than the level of 

categorical attributes used in the time complexity of the co-occurrence distance calculation. 

Second, it does not require the number of clusters to decide the weight that balances the 

nominal and numeric distances. As can be seen, the weights of the k-prototype and the 

optimal weighted distances have a great impact on the performance of the hierarchical 

algorithms. In order to achieve the best solution, the hierarchical algorithms need different 

weights for the partitions with different number of clusters.  

Under the assumption that no priori information such as the number of clusters is 

available, there are only two distances are applicable, namely, the co-occurrence and the 
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Goodall distances. Continuing on the second part of the proposed algorithm for searching the 

proper number of clusters, we only apply the co-occurrence distance to the agglomerative 

hierarchical clustering because of the time complexity.   

3.4.2.3  Comparative Study for Heart Dataset 

Since most mixed clustering algorithms use the Heart dataset to test their 

performance, this proposed clustering algorithm – hierarchical clustering with the co-

occurrence distance – is also applied on this dataset and compared to other five mixed 

clustering algorithms, which come from two categories, namely, the hierarchical and the k-

means families. The SBAC and ECOWEB are from the first category, while the k-prototype, 

the optimal weight k-means, and the fuzzy prototype k-means are from the second.  

Method Recovery Matrix Class Error Accuracy 

Hierarchical on 101 34 25.19% 76.24% 

 co-occurrence distance 38 130 22.62%   

SBAC 126 37 22.70% 75.25% 

  38 102 27.14%   

ECOWEB 105 20 16.00% 73.93% 

  59 119 33.15%   

k-prototype 116 55 32.16% 66.01% 

  48 84 36.36%   

Optimal Weight 136 32 19.05% 80.20% 

k-means(w=0.91) 28 107 20.74% 

Fuzzy prototype 139 21 13.13% 84.82% 

k-means 25 118 17.48%   

Table 14: Comparative study on Heart Disease dataset. 

As can be seen in Table 14, except the optimal weight k-means and the fuzzy 

prototype k-means, the results are better than the other algorithms. However, if there are no 

priori information on the number of clusters, k-means algorithms may not be applicable since 

they require the number of cluster as an input parameter.   

3.4.2.4. The Results of Co-occurrence Distance 

The details of results for the hierarchical clustering with Ward’s linkage based on the 

co-occurrence distance for real-world datasets are presented in Table 15. It includes 
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clustering recovery matrix, clustering accuracy and the error for each class. These results 

demonstrate this proposed clustering is capable of partitioning mixed datasets with a high 

rate of accuracy. The accuracy for Iris-Disc is higher than for Iris because the conversion 

from real attributes to categorical attributes exploits some optimal techniques to search the 

best splitting strategy and results in homogeneous intervals. Accordingly, the Iris-Disc values 

of the categorical attributes for the same type of the plants would share the same new 

assigned label with a large probability. Therefore, the procedure of optimal discretiztion 

enhances the co-occurrence between attributes, which improves the performance and gets 

better results than the general discretization using equal-width intervals as in Iris. 

Dataset Recovery Matrix Class Error Accuracy 

Heart Disease 101 34 25.19% 76.24% 

  38 130 22.62%   

Iris 50 0 0 0.00% 88.67% 

  0 50 17 25.37%   

  0 0 33 0.00%   

Iris-Disc 50 0 0 0.00% 94.67% 

  0 49 7 12.50%   

  0 1 43 2.27%   

Vote 161 60   27.15% 84.60% 

  7 207   3.27%   

Aus-Credit 321 43   11.81% 84.78% 

  62 264   19.02%   

DNA 502 30 110 21.81% 81.33% 

  133 691 146 28.76%   

  132 44 1398 11.18%   

Table 15: Results of real datasets with the co-occurrence distance. 

3.5  Properties of Proposed Clustering Method 

From the study on synthetic datasets, we acquired some insights on the characteristics 

of datasets, for which the co-occurrence distance would outperform the three other distances 

when used with the agglomerative hierarchical clustering method. In this section, we further 

apply these properties and exploit these advantages to preprocess the six real datasets. In 

doing so, the result dataset would be more applicable to the co-occurrence distance when 

used with hierarchical clustering.   
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3.5.1  Iris Dataset 

The attributes sepal length (SL) and sepal width (SW) of an Iris plant are very 

difficult to use to separate Class 2 and Class 3, which are represented by “+” and “∆” in 

Figure 2, respectively. However, from the scatter plot of petal length (PL) versus petal width 

(PW), though Class 2 and Class 3 have a little overlap, they are much easier to identify.  

 

Figure 2: The scatter plots of Iris. (Left) SL vs. SW. (Right) PL vs. PW. 

Choosing the discretized PL and PW, the co-occurrence distance will generate best 

results among the four distances, as seen the result of datasets Iris 2 and Iris 5 in Table 16. 

From the synthetic data study, the co-occurrence distance gives more weights on categorical 

attributes, and is not able to handle the categorical non-Gaussian noise well, but performs 

well with the redundant and noisy real attributes.   

  Occurr. Goodall k-prototype Opt. Weight  Description 

Iris 88.67% 90.00% 88.67% 82.67%  

Iris 1 71.33% 97.33% 73.33% 96.67% Discretize SW and SL; PW, PL 

Iris 2 95.33% 92.67% 95.33% 95.33% Discretize PW and PL; SW and SL 

Iris 3 94.67% 95.33% 94.67% 94.67% Four real and four categorical Attr.  

Iris 4 65.33% 71.33% 58.67% 58.67% Discretize SW and SL  

Iris 5 96.00% 92.67% 95.33% 95.33% Discretize PW and PL  

Table 16: Accuracy of preprocessed Iris dataset compared to original. 
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3.5.2  Vote Dataset 

The Vote dataset includes the attributes that clearly identify the class, e.g. Cat. 4, as 

well as very noisy attributes, e.g. Cat.2.  We pick up the attributes according to their 

significance calculated by the co-occurrence and random forest methods.   

First choose most significant attributes: C3 and C4, and then add the less significant 

one. In order to test the effect the least significant attributes, the nine least significant 

attributes (C1, C2, C9, C10, C11, C12, C13, C15, and C16) form dataset Vote 5. In addition, 

we select the four most significant attributes among the weakest (C9, C12, C13, and C16) in 

comparison.   

  Occurr. Goodall k-prototype Opt. Weight  Description 

Vote 84.60% 91.72% 86.21% 84.37%  

Vote 1 95.63% 90.81% 87.36% 87.36% Significant Attr. (C3, C4) 

Vote 2 87.59% 86.67% 86.67% 86.67% Significant Attr. (C4, C8) 

Vote 3 91.95% 90.81% 91.95% 91.95% Significant Attr. (C3, C4, C5) 

Vote 4 85.52% 85.75% 87.36% 85.75% Significant Attr. (C3, C4, C5, C8)  

Vote 5 83.68% 82.99% 87.59% 87.59% The nine weakest Attr.  

Vote 6 80.23% 82.76% 84.14% 84.14% The four Attr. among the weakest  

Table 17: Accuracy of preprocessed Vote dataset compared to original. 

The co-occurrence distance can improve performance when choosing the most 

significant categorical attributes, but does not handle very well with noisy categorical data as 

shown by Vote 5 and Vote 6 in Table 17.  

3.5.3  Heart Disease Dataset 

There are no significant individual categorical attributes. Both categorical and real 

attributes are noisy. To begin with, rank the attributes by the significance calculated with the 

co-occurrence method. The two most important categorical and real attributes form the 

dataset Heart 1, and then the first five most important attributes are chosen as dataset Heart 2.  

Next scenario includes the nine most important attributes. The latter two are made of only 

one data type. The result shows only considering a few important variables the performance 

of the co-occurrence method is no less than other measures.   
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  Occurr. Goodall k-prototype Opt. Weight  Description 

Heart 77.23% 77.23% 81.52% 78.55%  

Heart 1 76.57% 67.99% 76.57% 75.91% Significant Attr. (C4, C8, R3, R5) 

Heart 2 76.57% 76.24% 76.57% 76.57% Significant Attr. (C4, C8, R3, R4, R5) 

Heart 3 71.29% 71.62% 76.24% 70.96% C2, C4, C5, C8, R1, R2, R3, R4, R5 

Heart 4 76.24% 75.58% 78.88% 78.88% All categorical attributes 

Heart 5 72.61% 66.34% 61.06% 65.68% All numeric attributes 

Table 18: Accuracy of preprocessed Heart Disease dataset compared to original. 

3.5.4  Australian Credit Dataset 

One of categorical attributes, C5, is able to clearly identify the class in Australian 

Credit dataset, but many categorical attributes are noisy. The first two are real attributes, R3 

and R4, in the order of the significance of attributes by the co-occurrence relation. We add 

the significant categorical attributes one by one, until get a reasonable accuracy, seen the 

datasets Aus 1 and Aus 2. Remove the two real attributes to generate the dataset Aus 3, the 

result are what we expected.  

  Occurr. Goodall k-prototype Opt. Weight  Description 

Aus 84.78% 71.74% 83.48% 60.15%  

Aus 1 73.19% 73.62% 83.19% 73.48% C2, C4, C5, C6, C8, R3, R4 

Aus 2 85.51% 73.23% 77.97% 73.48% C2, C3, C4, C5, C6, C8, R3, R4, 

Aus 3 85.51% 53.19% 84.20% 84.20% C2, C3, C4, C5, C6, C8 

Aus 4 85.22% 82.99% 84.78% 83.19% All categorical attributes 

Aus 5 62.75% 68.12% 63.62% 66.67% All real attributes 

Table 19: Accuracy of preprocessed Australian Credit dataset. 

The co-occurrence distance is robust with the redundant and noisy real attributes. The 

results of datasets Aus 4 and Aus 5 show us that the total categorical attributes make greater 

contribution to discriminate the class than the total real attributes.   

3.5.5  DNA-nominal Dataset 

The DNA dataset has sixty four-level categorical attributes to determine the interface 

of a gene sequence. No categorical attribute could clearly identify the class. Some class has 

only one level on a particular attribute. For instance, though on attribute 29 all classes have 

level A, only donors have this one level. Acceptors only have one level G on attribute 31. In 
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a similar way, these attributes are ranked by their significance calculated with the co-

occurrence method. We select three elbow points on the plot of the ordered significance. The 

first scenario is the twelve most significant attributes. The second is the thirty-eight most 

important attributes. The last one has all attributes except the four weakest, C1, C53, C55, and 

C57. The results show after some data preprocessing procedures by choosing the most 

important attributes, the co-occurrence distance would achieve a higher rate of accuracy.  

  Occurr. Goodall k-prototype Opt. Weight  Description 

DNA 81.33% 73.98% 78.15% 76.15%  

DNA 1 77.09% 77.62% 83.46% 81.14% First 12 most significant Attr.  

DNA 2 87.70% 78.59% 84.02% 84.02% First 38 most significant Attr.  

DNA 3 82.58% 78.25% 78.31% 74.33% All Attr. except C1,C53,C55,C57 

Table 20: Accuracy of preprocessed DNA-nominal dataset compared to original. 

The properties of the proposed clustering are as follows.  

1. It gives categorical attributes more weights than the real ones. 

2. It is confused by the noise of other categorical attributes. 

3. It would have better performance if one categorical attribute would clearly 

identify the class. 

4. It is robust with redundant or noisy real attributes. 

3.6  Summary 

In this chapter, we propose an agglomerative hierarchical clustering using the co-

occurrence distance to partition the datasets with mixed data types. The performance is tested 

on a series of synthetic datasets and six standard real-world datasets, and furthermore, 

compared with other extant distances that would represent both real and categorical 

The advantage and disadvantage of the proposed method are presented. Another important 

advantage of the proposed algorithm is, if the number of clusters is absent, by using the 

derived tree structure, we can search for the optimal number of clusters. Another reason for 

using the co-occurrence distance rather than others is that the computational complexity of 

the Goodall distance calculation is prohibitive, and the weights balancing the nominal and 

numeric distances in both the k-prototype distance and the optimal weight distance change as 

the number of clusters varies.  
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CHAPTER 4 BK INDEX FOR MIXED DATA  

The output of any hierarchical clustering method such as the new variant proposed in 

Chapter 3, is a dendrogram or a tree structure from which a set of clusters can be obtained. 

However, this set of clusters is not unique, another important procedure is to determine the 

optimal points where cut the dendrogram to form a set of clusters. While this problem, which 

is usually referred to as cluster validation is well-known, there are few indices that can 

handle a dataset with both categorical and numeric attributes. The Calinski-Harabasz (CH) 

index defined in Chapter 2 has shown outstanding performance in the numeric domain. It 

was the best among the top 30 indices ranked by Milligan and Cooper (1985). The CH index 

searches the proper number of clusters by maximizing the ratio of the between-cluster and 

within-cluster scatter matrices. For categorical datasets, on the other hand, cluster entropy 

and categorical utility are frequently used.  

In this chapter we extend a validity index to find an optimal number of clusters in 

mixed datasets and integrate it with the hierarchical algorithm proposed in Chapter 3. The 

proposed validity index will be tested on several datasets, both synthetic and real; and then 

compared to three other indices that could be extended to handle mixed datasets.   

4.1  Motivation 

Cluster validation methods are able to evaluate the result clusters quantitatively and 

objectively, e.g., whether the cluster structure is meaningful or just an artifact of the 

clustering algorithm. There are two main categories of testing criteria, known as external 

indices and internal indices dependent on the present of priori information of known 

categories. 

Internal indices are validation measures which evaluate clustering results using only 

information intrinsic to the underlying data. Without true cluster labels, estimating the 

number of clusters, k, in a given dataset is a central task in cluster validation.   

Although a large number of validity criteria could be used to estimate the number of 

clusters in pure numeric data or pure categorical data, no index exists to deal directly with the 

cluster validation problems related to data containing both categorical and numeric attributes. 
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A family of cluster validation indices exploits inherent geometry or density to discover the 

underlying structures of numeric datasets. Recall that we generated a geometric-like distance 

combining both numeric and categorical distances in the preceding chapter. Thus, we could 

explore extant numeric indices with this geometric-like distance. Three indices are chosen 

based on their performance and usage reported in the literature review, namely, the Calinski-

Harabasz index (CH), the Dunn index (DU), and the Silhouette index (SI). The expected 

entropy of the partition structure is another way to evaluate the quality of a clustering result, 

since a low entropy indicates a high ordered structure. Chen and Liu (2009) exploited this 

property and designed an index called the BK index for categorical datasets. In this chapter, 

we will extend the BK index for mixed datasets. Unlike Chen and Liu’s algorithm, our 

approach reduces a computational burden without repeated calculations of cluster entropies.   

4.2  Background  

4.2.1  Calinski-Harabasz Index  

The Calinski-Harabasz index (Calinski and Harabasz, 1974) calculates the ratio of the 

between-cluster scatter matrix (SB) and the within-cluster scatter matrix (SW). It is formulated 

as,  
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where n is the number of objects and k the number of clusters. Tr(SB) and Tr(SW) are the 

traces of the between-class and the within-class scatter matrices, respectively. The 

formulations are given as follows.  
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where oi is an object in the class Ck, zk the centroid of cluster Ck, and z the centroid of all 

objects. Since well-separated and compact clusters are desirable, Tr(SB) is maximized and 

Tr(SW) minimized. The value of k that maximizes the CH index suggests an estimation of the 

optimal number of clusters.  
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4.2.2  Dunn Index 

The Dunn index (Dunn, 1974) attempts to identify the clusters that are compact and 

well-separated by maximizing the inter-cluster distance while minimizing the intra-cluster 

distance. The Dunn index for k clusters is given as  
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D(Ci, Cj) is the cluster distance between Ci and Cj and is found by taking the 

minimum distance between a pair of objects, one object in each cluster.  
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The diameter of cluster Cm, diam(Cm), is the maximum distance between two objects 

in a cluster. 
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The most probable number of clusters is obtained at the largest value of the Dunn 

index. One of the disadvantages of the Dunn index is its sensitivity to noise.   

4.2.3  Silhouette Index   

The Silhouette index (Kaufman and Rousseeuw, 1990) is an average of the silhouette 

width over all objects. The silhouette width of the ith object is defined as, 
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For the ith object, let ai be the average distance between object i and the other objects 

in its own cluster and bi the minimum of the average distances between the ith object and the 

other objects in other clusters. Therefore, the silhouette index is determined by  
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Since the objective is to obtain the clusters with minimum intra-cluster distance and 

maximum inter-cluster distance, high values for SI are desirable. Thus, the partition with the 

highest SI(k) is taken to be optimal.   
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4.3  Proposed Entropy-based Validity 

Entropy-based method computes the expected entropy of a partition. The smaller the 

expected entropy, the better quality of the partition is. The expected entropy decreases 

monotonically as the number of clusters increases, but from some point onwards the decrease 

flattens remarkably. Rather than searching for the location of an “elbow” on the plot, Chen 

and Liu (2009) calculated the second order difference of information gain, which is called the 

BK index.  

This index is applied on categorical attributes. In their study, they employed a 

hierarchical algorithm where cluster distance was the entropy difference between two 

clusters. This algorithm is computationally expensive since the entropies need to be 

iteratively calculated for categorical data. Calculating the entropies for numeric attributes is 

even more problematic because it is difficult to compute and bound density estimates of 

numeric attributes. In this chapter, therefore, we will employ the proposed hierarchical 

algorithm in the preceding chapter to identify the optimal number of clusters determined by 

the internal validation criterion.  

4.3.1  Notation 

The entropy for a dataset DS(U, A) is defined as  
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If a dataset is partitioned into a set of groups Pk, (C1, ⋯, Ck), then the entropy for an 

individual Cj is  

H( ) Pr( ( ) | ) log Pr( ( ) | )
i ai

j i j i j

a A s V

C a x s x C a x s x C
∈ ∈

= − = ∈ = ∈  .∑ ∑   (4.6) 

The expected entropy of a partition P of DS with k clusters is  

1
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where nj is the number of objects in Cj.  
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The entropy measures the prior uncertainty or impurity in a dataset. A small value 

indicates an ordered cluster structure. In general, it is expected each cluster to be pure, which 

means that objects in the same cluster come from a single class rather than from different 

classes. An optimal partition with k clusters that minimizes the expected entropy can be 

obtained by solving the LP problem as follows: 

( )
( )

1
H ( ) min( H( )).

j

opt j j
P k

C P k

k n C
n ∈

= ∑  (4.8) 

Chen and Liu (2009) showed that Hopt(k) satisfies the following two properties: 

(1) H opt(k) ∈[0, H(DS)] 

(2) H opt(k) is non-increasing with respect to k.  

If each object forms a singleton cluster, then the dataset is divided into n clusters. 

Thus, Hopt(n) = 0. On the other hand, if all objects gather into one cluster, then Hopt(1) = 

H(DS). When k increases, the optimal partition P(k), which has the minimal expected 

entropy, will tend toward a greater ordered configuration, thus, a lower entropy. When k 

achieves the correct number of clusters, increasing k on a small range will not change the 

current configuration dramatically, but rather tune the structural order, e.g., splitting a 

subclass.   

4.3.2  BK Index 

Chen and Liu (2009) define the BK index as the second order difference of 

incremental expected entropy of the partition structure. The highest value of the BK index 

indicates the potential number of clusters.  

Let’s define the information gain I(k) as the entropy difference between Hopt(k) and 

Hopt(k+1). In other words, I(k) tells us how much would be gained by fitting the data from 

k+1 clusters to k clusters. B(k) is the second order difference of I(k). 

I( ) H ( ) H ( 1)opt optk k k= − +  (4.9) 

2B( ) I( ) I( 1) I( )k k k k= ∆ = ∆ − − ∆  

(I( 1) I( )) (I( ) I( 1))k k k k                      = − − − − +   (4.10) 
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Assume that the optimal P(k), P(k+1), and P(k+2) have similar configurations. For 

instance, (C1, ⋯, Ck-1) in P(k) are similar to (C′1, ⋯, C′k-1) in P(k+1), respectively. If the 

proportions of C′k and C′k+1 are the same, then the combination of C′k and C′k+1 will not 

increase the expected entropy. Thus, I(k) = 0. If the two clusters have similar structures, then 

the combination will increase the entropy, but by a small amount. The information gain I(k) 

is small. In a similar way, if P(k+2) has a structure similar to P(k+1), the information gain 

I(k+1) is also small when converting the optimal partition P(k+2) to P(k+1). On the contrary, 

if the structure of P(k-1) is different from that of P(k), then fitting the data from k clusters 

into k-1 clusters would generate a larger information gain I(k-1) since the proportion of each 

class is seriously disturbed and leads to more impurity in P(k-1). If the configuration of 

partition P(k-1) changes significantly in comparison with P(k), but keeps stable in successive 

numbers after k, then k would be among the candidates for the optimal number of clusters. In 

this case, B(k) is large. To decide the best k, we can calculate the indices from two upwards 

and pick the k with the largest B(k).   

The question of deciding on the best k for mixed data clustering seems to be solved. 

However, as mentioned in the chapter on literature review, it is NP-hard to attack the 

problem of finding Hopt(k). As a result, some efficient approximate approaches should be 

adopted to solve this optimization problem. In the preceding chapter, the experiment showed 

the proposed algorithm, in comparison to the true classes, could recover the cluster structure 

with high accuracy. We can employ the tree structure constructed by this hierarchical 

algorithm to tackle the optimization problem of Eq. 4.8.   

4.3.3  Proposed Algorithm 

We still use the agglomerative hierarchical algorithm incorporating the co-occurrence 

distance, which is proposed in Chapter 3, to calculate the BK index that for both numeric and 

nominal attributes. However, the BK index first needs to be extended to numeric attributes. 

To avoid prohibitive entropies calculations for numeric attributes, we use the discretized 

dataset DS(U′, A′) rather than the original mixed datasets DS(U, A). The proposed algorithm 

to evaluate the correct number of clusters is described as follows.   

INPUT.  A dendrogram and the discretized dataset DS(U′, A′).  
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OUTPUT.  The most probable number of clusters. 

Initial: Compute the entropy of the whole dataset and k ← 2.   

Step 1: Calculate the expected entropy of a partition EE(Pk), EE(Pk+1), and EE(Pk+2).  

Step 2: Calculate Information Gain values I(k-1), I(k) and I(k+1) using Eq. 4.9.   

Step 3: Obtain B(k) using Eq. 4.10.  

Step 4: Increase k by one, and repeat Steps 1 – 3 until reaching some stop criterion.   

Step 5: Find the maximum B(k) and return the corresponding k.   

4.4  Experiment 

In order to test the proposed index, we continue on the synthetic and real-world 

datasets described in Chapter 3. Using the corresponding trees derived in the preceding 

chapter, we first calculate the validity indices, B(k), with respect to k from two up to 18, and 

then compare our proposed numbers with the correct numbers of true groups, along with 

other three indices, namely, the Calinski-Harabasz index (CH), the Dunn index (DU), and the 

Silhouette index (SI).   

4.4.1  Synthetic Datasets 

There are three classes in all synthetic datasets. Recall the first one is the base dataset 

(ds1) with three well-separated classes. By setting a co-occurrence relation in the attributes 

and introducing noise from Class 3 to Class 1, the datasets ds2 – ds4 are generated. Further a 

stronger co-occurrence relation appears in the datasets ds5 – ds7. The datasets ds8 – ds13 are 

generated by introducing non-Gaussian noise on categorical and real attributes respectively 

on ds1. Based on ds2 and ds5, the datasets ds14 – ds19 only add categorical non-Gaussian 

noise while the datasets ds20 – ds25 add real non-Gaussian noise. The last four relax some 

particular attribute(s). The detail of each dataset could be seen in Section 3.4.1.1.   

The estimated numbers of clusters of the four validity indices are presented in Table 

21 and Table 22. The bold font indicates the number equal to the true one. –‘s represent the 

method is invalid for evaluation. For the base dataset (ds1), except the CH index, other three 

indices obtain the correct number of groups, which can be observed at the maximum points 

in the plots of four indices with respect from 2 to 18 in Figure 3. However, when adding the 

co-occurrence relation in the attributes of the dataset, only the BK index can detect the proper 
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number when Class 1 includes 20% and 40% noise from Class 3. When the noise increases 

up to 60%, the BK index fails to evaluate the number, as seen in ds4 and ds7. Figure 4 

illustrates the BK index confuses the number among 2, 3, and 4 for the very noisy dataset 

ds4. 

  BK CH DU SI Description 

ds1 3 - 3 3 three well-separated classes 

      
ds2 3 - 4 4 occurrence + 20% noise 

ds3 3 - 4 4 occurrence + 40% noise 

ds4 2 - 4 4 occurrence + 60% noise 

      
ds5 3 - 4 4 Stronger occurrence + 20% noise 

ds6 3 - 4 4 Stronger occurrence + 40% noise  

ds7 2 - 4 4 Stronger occurrence + 60% noise 

Table 21: Estimated numbers of clusters by four validity indices.  

 

Figure 3: Plots of four indices on base dataset ds1.  



www.manaraa.com

48 

 

 

Figure 4: Plots of four indices on very noisy dataset ds4.  

When adding the non-Gaussian noise by switching the data in different classes, the 

results keep the same in ds8 – ds25 in comparison with their base datasets. The BK, DU, and 

SI indices find the correct number of groups in ds8 – ds13. Unfortunately, in ds14 – ds25, the 

DU and SI indices obtain four instead of three.  

  BK CH DU SI Description 

ds8 – 13 3 - 3 3 Adding non-Gaussian noise 

ds14 – 19 3 - 4 4 20% noise+Occur.+cat. non-Gaussian  

ds20 – 25 3 - 4 4 20% noise+Occur.+real non-Gaussian 

     
ds26 4 - - - Relax categorical variables  

ds27 3 - 3 3 Relax numeric variables  

ds28 3 - 3 - Relax Cat. 1 

ds29 3 - 3 - Relax Cat. 2 

Table 22: Estimated numbers of clusters by four validity indices (continued).  

When relaxing some attributes, from the result of ds26 in Table 22, these methods are 

not good at handling pure numeric attributes since the BK index catches four and other three 

fail. On the contrary, three indices can better handle pure categorical attributes as seen in 

ds27.   
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The above two tables show that the BK index is more accurate than the DU and SI 

indices. The CH index is not capable of handling the synthetic datasets because the plot is 

non-decreasing with respect to k, meaning we cannot find a maximum number. Three indices 

handle perfectly for the well-separated dataset without adding noise. However, the BK index 

outperforms the DU and SI indices when datasets become noisy. The non-Gaussian noise 

seems no much effect on the indices. The weakness of the indices is the ability to deal with 

pure numeric datasets.  

4.4.2  Real-world Datasets 

We work with the six real datasets described in the preceding chapter. The Iris and 

Iris-Disc datasets consist of three classes. One type of Iris is linearly separable from the other 

two, but those two overlap. As a result, the index will be tested to determine whether it can 

properly deal with overlapping clusters. The DNA-nominal dataset demonstrates a sub-

cluster hierarchical structure where three clusters (ie boundary, ei boundary, and no 

boundary) fall into two pairs (with or without boundary). This dataset is then used to probe 

whether the index could recognize the sub-cluster hierarchical structure.   

In a similar way, we use the six corresponding trees derived in Chapter 3, and 

calculate the validity indices for the six real datasets, B(k), with respect to k from two up to 

18, and plot the results in Figure 5. 

The correct number of the true clusters and the estimated numbers of clusters by the 

four indices for the six real datasets are provided in Table 23. The results favor the BK index 

out of the four indices. The BK index obtains the correct number of clusters for Heart 

Disease, Vote, Austrian Credit and DNA-nominal datasets; but for Iris and Iris-disc datasets, 

it ignores the two overlapping clusters and only catches two types of Iris. 
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Figure 5: B(k) for six real-world datasets. 

Dataset # Cluster (true) BK CH DU SI 

Heart Disease  2 2 2 - 2 
Iris 3 2 - 2 2 

Iris-Disc 3 2 - - - 

Vote 2 2 2 2 2 
Aus-Credit 2 2 2 3 3 

DNA-nominal 3 3 2 2 2 

Table 23: Estimated numbers of clusters by four validity indices for real datasets. 

All of the cluster validation methods cannot catch three types of Iris and fail to detect 

the two overlapping clusters, but obtain the true class number of the Vote dataset. All validity 

indices except the DU index capture the correct group of patients in the Heart Disease 

dataset. For the Austrian credit dataset, the BK and CH retrieve the correct number; by 

contrast, the DU and SI estimate one more cluster. The DNA dataset has a cluster hierarchy 

where some clusters are closely grouped together. Only the BK index obtains the correct 

number of DNA dataset, while other three confuse the subclass structure and get two rather 

than three.   
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Figure 6: Plots of four indices on Heart Disease. 

 

Figure 7: Plots of four indices on Iris. 
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Figure 8: Plots of four indices on Iris-Disc. 

 

Figure 9: Plots of four indices on Vote. 
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Figure 10: Plots of four indices on Australian Credit. 

 

Figure 11: Plots of four indices on DNA. 
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4.4.3  Preprocessed Real Datasets 

In this section, we conduct a comparative study of the four indices on the series of 

datasets generated by data preprocessing on the six real-world datasets, and especially, focus 

on the datasets that achieve the most accuracy when using the co-occurrence distance, which 

are indicated in the second column in the tables (Table 24 – Table 28) in this section. The 

next four columns show the estimated numbers of clusters by four indices; and the last 

column presents brief description for each dataset. As usual, -‘s represent the failed methods. 

The bold font denotes the value equal to the true number of classes.  

4.4.3.1  Iris Dataset 

There are three types of Iris in the Iris datasets. The BK, CH, and DU indices only 

capture two types in the original dataset. However, for the two datasets of interest, namely, 

Iris 2 and Iris 5, the BK index identifies the number correctly, but all other indices fail.   

   BK CH DU SI Description 

Iris  2 - 2 2  

Iris 1  2 - 6 7 Discretize SW and SL; PW, PL 

Iris 2 √ 3 - 5 5 Discretize PW and PL; SW and SL 

Iris 3  2 - - - Four real and four categorical Attr.  

Iris 4  3 - - 6 Discretize SW and SL  

Iris 5 √ 3 - - 5 Discretize PW and PL  

Table 24: Estimated numbers of clusters by four validity indices for Iris. 

The plots of four indices present some details. For instance, the DU index on Iris 2 

shows the hard decision between 2 and 5 while the SI index is confused among 3 – 6.  
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Figure 12: Plots of four indices on Iris 2. 

4.4.3.2  Vote Dataset 

All numbers of clusters for these vote datasets caught by the BK index are correct. 

However, from Table 25, other three indices almost fail to find the proper number. 

   BK CH DU SI Description 

Vote  2 - 2 2  

Vote 1 √ 2 - - - Significant Attr. (C3, C4) 

Vote 2 √ 2 - - - Significant Attr. (C4, C8) 

Vote 3 √ 2 - 7 - Significant Attr. (C3, C4, C5) 

Vote 4  2 - - - Significant Attr. (C3, C4, C5, C8)  

Vote 5  2 2 - 2 The nine weakest Attr.  

Vote 6  2 - 3 - The four Attr. among the weakest  

Table 25: Estimated numbers of clusters by four validity indices for Vote. 
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Figure 13: Plots of four indices on Vote 2. 

4.4.3.3  Heart Disease Dataset 

Only the BK index captures the correct number of clusters for all constructed datasets 

based on the Heart Disease dataset. By contract, from Table 26, other three indices almost 

fail to find the proper number. 

   BK CH DU SI Description 

Heart  2 2 - 2  

Heart 1 √ 2 3 - - Significant Attr. (C4, C8, R3, R5) 

Heart 2 √ 2 - 6 7 Significant Attr. (C4, C8, R3, R4, R5) 

Heart 3  2 - 6 7 C2, C4, C5, C8, R1, R2, R3, R4, R5 

Heart 4  2 2 3 - All categorical attributes 

Heart 5 √ 2 - - 2 All numeric attributes 

Table 26: Estimated numbers by four validity indices for Heart Disease. 
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Figure 14: Plots of four indices on Heart 1. 

4.4.3.4  Australian Credit Dataset 

The BK and CH indices have good performance on datasets related to the Australian 

Credit data. They detect the correct number of clusters for all datasets except Aus 5 dataset, 

which is very noisy since the highest clustering accurate rate in Aus 5 is 68.12% compared to 

84.78% in original dataset (Aus). The corresponding accuracy can be found in Section 3.5.4.   

   BK CH DU SI Description 

Aus √ 2 2 3 3  

Aus 1  2 2 3 3 C2, C4, C5, C6, C8, R3, R4 

Aus 2 √ 2 2 2 - C2, C3, C4, C5, C6, C8, R3, R4 

Aus 3 √ 2 2 2 - C2, C3, C4, C5, C6, C8 

Aus 4 √ 2 2 5 - All categorical attributes 

Aus 5  6 - - 2 All real attributes 

Table 27: Estimated numbers by four validity indices for Australian Credit. 
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4.4.3.5  DNA-nominal Dataset 

The BK index is able to catch the correct number of datasets related to the DNA data. 

On the other hand, the CH, DU, and SI indices find two subclasses of DNA in all datasets 

except DNA 3. However, as could be seen in Figure 15, the estimated numbers of the other 

three indices for DNA 3 are not stable and easily confused since the values on 2 and 3 are 

very close in the three plots. If some redundant information or noise is introduced, for 

instance, adding attribute 1, 53, 55 and 57, the three indices are not able to determine the 

proper number and catch two rather than three.   

   BK CH DU SI Description 

DNA √ 3 2 2 2  

DNA 1  3 2 2 2 First 12 most significant Attr.  

DNA 2 √ 3 2 2 2 First 38 most significant Attr.  

DNA 3 √ 3 2 3 3 All Attr. except C1,C53,C55,C57 

Table 28: Estimated numbers of clusters by four validity indices for DNA. 

 

Figure 15: Plots of four indices on DNA 3. 
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4.5  Summary 

The proposed algorithm is performed on some synthetic and real-world datasets with 

various characteristics. The results show it is efficient not only to cluster a dataset having 

mixed types of features, but also to determinate the best number of classes. The BK index 

presents an impressive result in comparison with the DU, CH, and SI indices.  

Especially, we provide the solution to preprocess the mixed data according to the 

ranks of the importance for each attribute and properties of hierarchical clustering with the 

co-occurrence distance. As a result, the reduced mixed datasets are more applicable to be 

analyzed by the proposed algorithms in terms of not only the capability of achieving a higher 

accurate rate, but also the ability to find the best number of groups.  
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CHAPTER 5 CONCLUSION  

Many applications give rise to databases with mixed data, that is, variables that take 

both numerical and categorical attributes. As one example, a surveillance database of 

criminal activities might contain numeric attributes such as age, time of the day, and number 

of the offenders, as well as categorical attributes like gender, location, and weapons used 

(Yang and Olafsson, 2011). It is often of interest to find natural clusters of instances in such 

databases, but unfortunately the majority of clustering algorithms are designed for only one 

data type and incapable of handling data containing both types directly.   

Motivated by the need to solve mixed data type clustering problems and the current 

gap in the literature regarding methods for such problems, in this dissertation we propose and 

demonstrate a clustering framework that is effective and yields important practical results. 

This framework has two main components. First there is the actual clustering algorithm, 

which is based on traditional hierarchical clustering and outputs a tree structure containing 

multiple actual cluster solutions. For measuring similarly, we choose the recently proposed 

co-occurrence measure. We compare this measure with three other well-known distances 

measurements capable of handing mixed data when incorporated into agglomerative 

hierarchical clustering. These measures are the Goodall distance, the k-prototype distance, 

and the optimal weight distance. We also identify certain limitations of applying hierarchical 

clustering with a co-occurrence distance and propose a solution in which the co-occurrence 

distance would outperform other distance measures.    

 The second component of the framework is to define a validity index to find an 

optimal number of clusters in mixed datasets and integrate it with the hierarchical clustering. 

The performance of the so-called BK index is compared to other known validity indexes, 

namely the Calinski-Harabasz index (CH), the Dunn index (DU), and the Silhouette index 

(SI), and the results are favorable for using the BK index for cluster validation in mixed data.  

By testing the proposed approach on both standard benchmark datasets from the UCI 

repository and, synthetic datasets with various characteristics, we demonstrate the method 

not only effectively retrieves the true class in terms of prediction accuracy, but also is 

capable of effectively finding the true number of clusters. 



www.manaraa.com

61 

 

In conclusion, our framework addresses two important issues regarding clustering 

mixed datasets. One is how to search for the optimal number of clusters, which is important 

as this is unknown in many applications. We extend the BK index to both data types. Thus, it 

would be used to quantify clustering results from the hierarchical algorithm. The BK index 

outperforms other three indices, namely, the CH, DU, and SI indices in comparison with the 

true numbers of clusters. The other issue is how to group the objects “naturally” given the 

number of cluster. We use the co-occurrence distance to measure the dissimilarity since this 

distance is as effective as other distances capable of handling mixed data such as the Goodall, 

k-prototype and optimal weighted distances.   

All of the research problems considered in this dissertation address critical issues for 

clustering mixed-type attributes in data mining applications. Clearly the research in this area 

is far from complete. Some details would be improved such as using optimal techniques to 

discretize the numeric attribute rather than the five-equal width method. Feature selection in 

the proposed algorithm is optional and exploratory, but was found to be promising. However, 

providing an adaptive feature selection technique to systemically and dynamically determine 

which attributes should be included as a preprocessing step prior applying learning 

algorithms is also another challenge. In addition, as instances accumulate, scalability 

improvement will be under consideration, which leads to solving optimization problems on 

instance selection. On the other hand, feature selection and instance selection may provide 

valuable information about the objects of interest.  
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